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Summary River flow forecasting constitutes one of the most important applications in hydrol-
ogy. Several methods have been developed for this purpose and one of the most famous tech-
niques is the Auto regressive moving average (ARMA) model. In the research reported here, the
goal was to minimize the error for a specific season of the year as well as for the complete ser-
ies. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge
station on the Karun River with 68 years of observed stream flow data was selected to evaluate
the performance of the proposed method. The results when compared with the usual method of
maximum likelihood estimation were favorable with respect to the new proposed algorithm.
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Introduction

In long or short-term river operation, river flow estimation is
an important parameter. One of the common methods em-
ployed is based on using past observed data and forecasting
river discharge in the future or using time series analysis.
The field of time series analysis has changed in the last dec-
ade due to progress and acquisition of new knowledge in
non-linear dynamics (Sprave, 1994). Nevertheless, there
are still applications where the accurate estimation of lin-
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ear processes such as auto regressive moving average
(ARMA) models are sufficient especially when they are used
for linear time series analysis (Hwarng, 2001). However, the
methods for this class of models were developed more than
20 years ago, with the restrictions of the then currently
available computer resources. Therefore, it is necessary
to test the new approaches in applying the ARMA models
in time series analysis.

In recent years, artificial neural networks have been
investigated to substitute the ARMA models in estimating
time series data. Abrahart and See (2000) compared ARMA
models to artificial neural network (ANN) for forecasting
river flow data for two contrasting catchments. The relative
performance between the ANN and ARMA forecasts were
quite similar at each station using common data inputs.
Application of ARMA models in short-term rainfall prediction
.
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for real-time flood forecasting was investigated by Toth
et al. (2000). They used three models including ARMA, ANNs
and nearest-neighbour approaches. Hwarng (2001) com-
pared an ARMA(p,q) model with an ANN to forecast time
series. He presented a summary of other researchers’ work
and concluded that ANNs are not better than traditional
ARMA models in performance if there is no non-linearity in
the data.

There have been several attempts to estimate the
parameters of ARMA models by different researchers (Ljung
and Box, 1979; Ansely, 1979; Gardner et al., 1980; Pearl-
man, 1980; Melard, 1984; Azrak and Melard, 1998). Most
of these methods are based on the Kalman filter which
needs a great amount of computation. Monte-Carlo experi-
ments have shown that for ARMA models with relatively
short lengths of data, e.g. 50 or 100 observations, exact
maximum likelihood estimation is far superior to conditional
maximum likelihood estimation or least-squares estimation
(Azrak and Melard, 1998). Recently, artificial neural net-
work techniques have been used to estimate ARMA parame-
ters. Chenoweth et al. (2000) showed that an ANN is not
able to estimate the order of ARMA models accurately when
the number of data points is less than 100.

Goal programming has been used successfully in several
different fields for multi criteria decision making. In the
1960s the idea was presented by Charnes and Cooper
(1961) by minimizing the sum of the absolute goal devia-
tions. Since then, summaries and reviews of goal program-
ming have been published by several authors, such as Ijiri
(1965), Ignizio (1981), and Hillier and Lieberman (1990).
Two main drawbacks in goal programming are the mathe-
matical expression of goals and constraints and optimizing
all goals simultaneously (Arikan and Gungor, 2001). Ad-
vances in computers have assisted in solving the second
problem and it is now possible to compute large matrices
and obtain the answers in a short time.

The purpose of this research is to apply the goal program-
ming technique in applied hydrology. An attempt has been
made to estimate the ARMA model parameters in order to
forecast river flow. The objective of the study is to mini-
mize the estimation error in forecasted time series within
a specified season rather than for the whole series during
a year. The main reason for this point of view is the suitabil-
ity of time series analyses for the specified season. Some
seasons such as spring and fall in this case study could not
be modeled using time series analysis. The average percent-
age error for the whole series was 24.2% but for the period
of October–January it was about 36%. The main reason for
this was the heavy rainfalls and floods in these seasons
which made it difficult to find a good pattern in time series.
Summer season was the best season for forecasting using an
ARMA model in the study area with an average error of 16%.
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Figure 1 Histogram of Karun River inflow in Shaloo Bridge
station.
Study area

Karun River watershed located in the south-west of Iran
with an area of 23,250 km2 is part of the Persian Gulf wa-
tershed. The elevation varies between zero near sea level
to more than 4000 m in the mountains. There are 83 river
flow gauges on the Karun River and its branches. The longest
data set belongs to Ahwaz station near Ahwaz city from
1950 and Fig. 1 shows the river flow histogram in that sta-
tion (Jamab, 1999). There are two dams constructed on
the river and the first station above the upper dam, Karun
1, is the Shaloo bridge station. Since the data at this station
are not affected by the dam, they were selected for this re-
search. Monthly river flow data in this station from 1933 to
2001 were used for evaluating the proposed method. The
monthly average river flow is 826.2 cubic meters per month.
The minimum and maximum monthly average flows are
334.81 and 1763.18 in September and March, respectively.

Traditional ARMA process estimation

The ARMA(p,q) is one of the most traditional techniques in
time series analysis. The assumed model is of the form

xt ¼ /0 þ /1xt�1 þ � � � þ /pxt�p þ zt � h1zt�1 � � � � � hqzt�q

ð1Þ

where p is the order of the autoregressive part, q is the or-
der of the moving average part, /1, . . . ,/p are the autore-
gressive parameters, /0 is a constant offset, and h1, . . . ,hq
are the moving average parameters. zt denotes the series
of errors. The time series xt should be stationary. The first
step is to determine the model orders p and q. It thus be-
comes necessary to calculate the autocorrelation function
and partial autocorrelation function. The plot of these
two functions provides hints with respect to the model or-
ders. Nevertheless, this method is only useful for low model
orders and does not provide a reliable tool for model iden-
tification. If there is seasonality in the data, but no trend,
then the data can be modeled as:

xt ¼ st þ Yt ð2Þ

where Yt is a stationary process. The seasonality component
is such that

st ¼ st�h ð3Þ

where h denotes the length of the period (Bogacka, 2004)
and
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Figure 2 Autocorrelation function for Karun River inflow at
Shaloo Bridge station.
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Figure 3 Partial autocorrelation function for Karun River
inflow at Shaloo Bridge station.
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Xh

k¼1
sk ¼ 0 ð4Þ

A seasonal ARMA model, denoted by ARMA(P,Q)h is of the
form

xt ¼ U1B
hxt�1 þ � � � þ UPB

Phxt�P þ zt �H1B
hzt�1 � � � �

�HQB
Qhzt�Q ð5Þ

where U(Bh) and H(Bh) are, respectively, the seasonal AR
and MA operators, with seasonal period of length h.

The second step is to estimate the model parameters.
Two current methods used for this problem are least-
squares and maximum likelihood estimation. Since there
are various reasons to keep the model order as low as pos-
sible, information criteria may be introduced to combine
the need for a good fit with the principle of parsimony.
These criteria (e.g. Bayesian Information Criterion-BIC,
Akaike’s Information Criterion-AIC) join the residual vari-
ance on the one hand and the method orders on the other.
The analyst’s aim is then to minimize such a criterion.

In order to find the number of AR and MA parameters,
autocorrelation functions (ACF) and partial autocorrelation
functions (PACF) were calculated (Figs. 2 and 3, respec-
tively). Based on these graphs, the value of ACF and PACF
are relatively high for lag 1 and 2; therefore, 2 AR and 2
MA parameters were considered to be a good model for
the Karun river flow at the Shaloo Bridge station. The ARMA
model parameters were computed using MiniTAB under the
Windows operating system.

Estimating ARMA model parameters using goal
programming

ARMA model parameters computed in the previous section
using maximum likelihood were then refined using an opti-
mization method. Goal programming (GP) is a method that
allows several objectives or goals to be attained simulta-
neously. In this method, the deviation from the goal is mea-
sured and after representing the objective function
Table 1 Summary of parameter estimation results for the comp

Model (none seasonal)(seasonal) Method

Without constant offset
ARMA (1,0)(1,0) Maximum likelihood

GP
ARMA (2,0)(2,0) Maximum likelihood

GP

With constant offset
ARMA (1,0)(1,0) Maximum likelihood

GP
ARMA (2,0)(2,0) Maximum likelihood

GP
ARMA (1,1)(0,0) Maximum likelihood

GP
ARMA (2,2)(0,0) Maximum likelihood

GP
mathematically, a solution which minimizes the weighted
sum of the goal deviations is searched. Because of the
ACF and PACF results, a maximum of 2 AR and MA parame-
ters have been considered for analysis and all combinations
of model parameters from ARMA(1,0) to ARMA(2,2) were
tested. The proposed objective function is as follows:
lete time series in the calibration phase

Mean absolute error SD

Maximum Average Minimum

233.51 20.87 0.04 20.08
74.02 20.40 0.03 16.76

246.31 32.19 0.01 26.34
75.01 19.58 0.15 16.78

253.82 34.08 0.02 23.03
73.05 22.28 0.03 17.21

182.25 24.23 0.13 22.98
75.04 17.28 0.01 16.09

226.73 26.27 0.09 23.88
85.01 21.24 0.02 17.73

226.73 26.27 0.09 23.88
94.99 25.81 0.18 18.61
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min
XNT

i¼1
Um � EPi þ Vm � ENi m ¼ 1; . . . ; 12 ð6Þ

and constraints are:

AR1 � Xi�1 þ AR2 � Xi�2 þ � � � þ ARn � Xi�n

þ MA1 � Ri�1 þ MA2 � Ri�2 þ � � � þ MAn � Ri�n

þ SAR1 � Xi�12 þ SAR2 � Xi�24 þ � � � þ SARn � Xi�n�12

þ SMA1 � Ri�12 þ SMA2 � Ri�24 þ � � � þ SMAn � Ri�n�12

þ Cm þ EPi � ENi < ð1þ divÞ � Xi
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Figure 5 Comparison between different metho
AR1 � Xi�1 þ AR2 � Xi�2 þ � � � þ ARn � Xi�n

þ MA1 � Ri�1 þ MA2 � Ri�2 þ � � � þ MAn � Ri�n

þ SAR1 � Xi�12 þ SAR2 � Xi�24 þ � � � þ SARn � Xi�n�12

þ SMA1 � Ri�12 þ SMA2 � Ri�24 þ � � � þ SMAn � Ri�n�12

þ Cm þ EPi � ENi > ð1� divÞ � Xi

0 6 EPi 6 Ediv� Xi

0 6 jENij 6 Ediv� Xi
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ds and observed data for calibration period.

30 36 42 48 54 60

e (month)

ximum Likelihood GP Observed

ds and observed data for verification period.
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where AR1, . . . ,ARn are non-seasonal autoregressive param-
eters, SAR1, . . . ,SARn are seasonal autoregressive parame-
ters, MA1, . . . ,MAn and SMA1, . . . ,SMAn are non-seasonal
and seasonal moving average parameters, Um and Vm are
the coefficients for monthly deviation from the actual va-
lue, EP is the positive relative error, EN is the negative rel-
ative error, Ediv is the relative error range for maximum
possible error, div is the relative error for forecasting, X is
the number of data points in the time series data, R is the
residual series, Cm represents the constants in the model,
and NT is the number of data in the time series.

The FORTRAN 99 programming language was used to de-
velop the optimization program with two objectives (goals)
being considered in the model: minimizing the deviation in
the whole series and minimizing the deviation in the specific
season which was from October to January.
Table 2 Summary of parameter estimation results for a specific

Model (none seasonal)(seasonal) Method

Without constant offset
ARMA (1,0)(1,0) Maximum likeli

GP
ARMA (2,0)(2,0) Maximum likeli

GP

With constant offset
ARMA (1,0)(1,0) Maximum likeli

GP
ARMA (2,0)(2,0) Maximum likeli

GP
ARMA (1,1)(0,0) Maximum likeli

GP
ARMA (2,2)(0,0) Maximum likeli

GP

Table 3 Summary of parameter estimation results for the comp

Model (none seasonal)(seasonal) Method

Without constant offset
ARMA (1,0)(1,0) Maximum likelihood

GP
ARMA (2,0)(2,0) Maximum likelihood

GP
With constant offset
ARMA (1,0)(1,0) Maximum likelihood

GP
ARMA (2,0)(2,0) Maximum likelihood

GP
ARMA (1,1)(0,0) Maximum likelihood

GP
ARMA (2,2)(0,0) Maximum likelihood

GP
Results and discussion

In this work, two methods have been used to identify the
ARMA model parameters. These two methods are the maxi-
mum likelihood which is used in most commercial software
and error minimization using goal programming. The latter
has the advantage that one can simultaneously calibrate
the model for the whole series as well as for a specific sea-
son. In order to evaluate the proposed method, 63 years of
data were used to estimate the model parameters and the
last five years were selected for model verification. Tables
1 and 3 summarize the different models tested for calibra-
tion and verification phases. Both seasonal and non-seasonal
ARMA models were tested and results for ARMA(2,0)(2,0)
with no MA parameter which had the best results are shown
in Figs. 4 and 5 for calibration and verification periods,
season using the complete series in the calibration phase

Mean absolute error

Maximum Average

hood 74.02 24.33
126.65 32.38

hood 75.01 24.61
94.03 27.57

hood 73.05 25.34
182.25 29.88

hood 75.04 24.75
226.73 28.71

hood 85.01 27.14
226.73 28.71

hood 94.85 35.88
233.51 29.76

lete time series for the verification period

Mean absolute error SD

Maximum Average Minimum

78.08 24.94 0.91 18.71
153.44 47.04 0.86 35.58
75.66 21.89 0.30 18.26

110.83 44.55 1.35 27.81

70.76 26.95 0.23 19.61
87.57 28.21 0.17 19.86
67.25 20.43 0.06 15.01

104.36 31.46 0.39 19.35
79.77 19.27 1.03 16.79
90.16 19.48 0.25 21.68
72.3 21.87 0.26 16.94
95.70 17.58 0.23 19.95



Table 4 Summary of parameter estimation results for a specific season using the complete series for the verification phase

Model (none seasonal)(seasonal) Method Mean absolute error

Maximum Average

Without constant offset
ARMA (1,0)(1,0) Maximum likelihood 54.96 23.29

GP 89.20 36.85
ARMA (2,0)(2,0) Maximum likelihood 52.58 22.31

GP 60.07 25.63
With constant offset
ARMA (1,0)(1,0) Maximum likelihood 49.09 22.49

GP 87.57 34.66
ARMA (2,0)(2,0) Maximum likelihood 53.14 23.42

GP 104.36 32.65
ARMA (1,1)(0,0) Maximum likelihood 60.38 23.56

GP 90.16 32.71
ARMA (2,2)(0,0) Maximum likelihood 72.30 34.04

GP 95.70 30.00
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respectively. Since it was not possible to show all 63 years of
data clearly in one graph, five years were randomly selected
from the calibration or training data. Month number 1 in this
figure is September. For other models during the calibration
period, GP showed better results in general. During the ver-
ification period, ARMA(2,2) with GP method performed bet-
ter than the other models. However, the maximum
likelihood approach also could forecast the river flow as
well as the GP approach or even better in other types of
ARMA models especially for verification data. As is evident
in Figs. 4 and 5, the GP method could estimate the high
flows better than the maximum likelihood. On the other
hand, superior performances for forecasting the low flows
were obtained with the maximum likelihood principle.

In order to test the model for a specific season, October
to January was selected. The reason for this selection was
the inability of other forecasting methods such as
rainfall-runoff, snowmelt models, artificial neural networks
and the standard ARMA methods in predicting the river
flow with enough accuracy for the case study. All these
methods were tested prior to using the ARMA model.
Consequently, the reservoir faced operational difficulties
during these months. Tables 2 and 4 show the results
of the models which have relatively close agreement with
the maximum likelihood method. Results show that
when the number of AR and MA parameters increase, the
GP method has a better performance compared with the
maximum likelihood method. ARMA(2,2) in both the cali-
bration and verification stages had better predictive capa-
bilities. To compare the models, the mean absolute error
was used as the defining criterion.

Conclusion

Goal programming was used to calculate ARMA model coef-
ficients. Results for the Karun River proved that the method
is accurate and efficient enough for this purpose. The main
disadvantage of the GP method is the high computational
cost especially for a large number of model parameters.
This negative aspect may be mitigated somewhat by using
efficient optimization algorithms to reduce the computa-
tional time. With the rapid advances in computer technol-
ogy, however, it is expected that significant reductions in
this constraint will be realized making it more and more fea-
sible to test these new methods.

Since this technique is in its preliminary phase, the num-
bers of AR and MA parameters are manually selected by the
user. The next step will be the optimizing of these model
parameters using integer programming.
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